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Abstract. We present a method that permits the calculation of the dynamical correlation
functions for quantum systems. These are obtained by evaluating the generating functionals
of the static moments of the relaxation functions in a self-consistent approximation that can be
obtained by an appropriate extension of the effective potential theory.

The thermodynamics of quantum systems has been widely studied by the effective potential
theory [1, 2]. This treatment has proved to be very accurate to determine equilibrium
properties [3–5], but encounters quite a number of theoretical and practical difficulties in
being applied to dynamical phenomena. An extension of the formalism uniquely based on
ingenuity does not allow for a serious control of the results and slips easily intoad hocor
even erroneous assumptions. On the other hand it is self-evident that an adequate way for
calculating quantum dynamical correlations would be highly welcome. It is our purpose to
fill this gap and to provide an effective method to calculate dynamical quantities in terms
of path integrals. We shall mainly be concerned with the Kubo relaxation functions, that
naturally appear in the framework of Mori theory [6]. These functions are obtained by
suitably defined scalar products, the Mori products

RA,B(t) = (Â|B̂(t)) =
∫ βh̄

0
du 〈Â(0)B̂(t + iu)〉 (1)

where the observableŝA and B̂ are taken such that〈Â〉 = 〈B̂〉 = 0, and braces denote the
thermodynamic average. The Laplace transform of equation (1), in turn, has a continued
fraction representation whose coefficients are static normalized relaxation functions, i.e.
time-independent normalized Mori products of derivatives of the dynamical variablesÂ(t)

and B̂(t). In particular, the self-relaxation function40(t) = (F̂0|F̂0)
−1 (F̂0(t)|F̂0) of a

Hermitian operatorF̂0(t) can be Laplace transformed and expanded in a continued fraction,
namely4j(z) = (z + δj+14j+1(z))

−1, whereδj+1 = (F̂j |F̂j )−1(F̂j+1|F̂j+1) and F̂j denotes
the so-calledj th fluctuating force. The quantities(F̂j |F̂j ), can be related to a combination
of the first 2(j + 1) frequency moments i.e. the coefficients of the time-series expansion
of 40(t). While (F̂j |F̂j ) with j 6= 0 can be expressed in terms of static correlations, the
quantity(F̂0|F̂0) requires the direct evaluation of the Mori product.
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Indeed, experiments measure the spectral shape, given by the Fourier transform of the
dynamic correlation function, related to40(z) by the ‘detailed balance’ principle:

S(ω) = (F̂0|F̂0)
ω

1− e−βω
1

π
<(40(z = iω)). (2)

Therefore, the calculation ofS(ω) can be approached from the knowledge of the static
quantitiesδj up to a sufficiently large numberj = J [7], supported by some insight into
the long-time behaviour of the continued fraction termination4J (t) [5, 8, 7].

Here we shall provide a functional method and an explicit formula for thedirect
evaluation of an arbitrary Mori product by an effective potential approximation, so that all
the δj can be calculated either numerically or by suitable analytical approximations. This is
particularly relevant for(F̂0|F̂0), which is an external parameter of the Mori approach and
could not be explicitly obtained in terms of static correlations. Moreover, our rigourous
derivation of imaginary time-ordered products allows us to control the evaluation of real
time correlators that can be approached by means of a ‘pure quantum Gaussian’ molecular
dynamics, thus producing a major breakthrough in the accuracy of the computation.

We start from the generating functional in the Hamiltonian path-integral form:

Z[L, J ] =
∮
D[x(u)]

∫
D[p(u)] exp

[
− 1

h̄

∫ βh̄

0
du(−ip(u)ẋ(u)+H(p(u), x(u))

−h̄L(u)p(u)− h̄J (u)x(u))
]
. (3)

According to the effective-potential method [1, 2, 5] we consider a quadratic trial
action obtained by substitutingH(p(u), x(u)) with (1/2m)(p(u)− η)2 + (mω2/2)(x(u)−
ξ)2 + w, whose parametersw, m and ω depend on the average point(η, ξ) =
(βh̄)−1(

∫
dup(u),

∫
du x(u)) of each path. The effective Hamiltonian reads

Heff(η, ξ) = w(η, ξ)+ β−1 ln(f −1 sinhf ) (4)

where f = βh̄ω/2 rules the quantum character of the system. By defining the two-
component vectorsρ = t (η, ξ) andK(u) = t (L(u), J (u)), the approximated generating
functional can be written as

Z0[K] =
∫

dη dξ

2πh̄
e−βHeff(η,ξ)

× exp

[ ∫ βh̄

0
du tρK(u)+ 1

2

∫ βh̄

0
du
∫ βh̄

0
dv tK(u)8(u− v)K(v)

]
. (5)

In equation (5) we have introduced the 2×2 matrix8k`(u−v) with elements811(u−v) =
m2ω2822(u− v) = m2ω23f (u− v) and812(u− v) = −821(u− v) = 0f (u− v), where

3f (u− v) = h̄

2mω sinhf

[
cosh(|ω(u− v)| − f )− sinhf

f

]
0f (u− v) = im

∂3f (u− v)
∂v

= − ih̄

2

sinh(|ω(u− v)| − f )
sinhf

[θ(u− v)− θ(v − u)].
(6)

While 3f is always well defined, the value of0f for u = v is determined only if we
specify the limitv − u→ 0± that must be taken, reflecting the commutation relation ofx̂

and p̂ at the same time. Moreover, a squared lengthα = h̄/(2mω)(cothf − 1/f ) and an
energyEω = mω2α are naturally defined by the parameters of the system. It is also worth
observing that3f (0) = 3f (βh̄) = α and that3f (u − v) and0f (u − v) have a vanishing
average in [0, βh̄].
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If we define the two-component vectorsẑ = t (p̂, x̂) and y = (y1(u), y2(u)), after a
lengthy but straightforward calculation, the following general formula can be derived in the
low-coupling approximation [5], i.e.ω independent ofη andξ :〈
Tu
[ N∏
ν=1

F̂ν(ẑiν (uν))

]〉
= N

N∏
ν=1

Fν

(
δ

δKiν

)
Z0[K]

∣∣∣∣
K=0

= N
∫

dη dξ

2πh̄
e−βHeff(η,ξ)

〈〈 N∏
ν=1

Fν(ρiν + yiν (uν))
〉〉
. (7)

Here,N = Z−1
0 [0] is the normalizing factor, and the double brackets denote the average

over the Gaussian distribution of the variablesyiν (uν), defined by the second moments

〈〈yi(v)yj (u)〉〉 = 8ij (u− v). (8)

The expression (7), with the definition (8), is the key result of our paper and represents
the main concern of what will follow. The discussion of these new formulae will provide
a clear indication of the possibilities of their applications and will demostrate the great
improvement for the actual calculation of dynamical quantities; indeed, complicated static
Mori products, i.e. moments of any order, can be evaluated by this last equation. Static
correlations can also be obtained performing the appropriate limitu− v→ 0.

In order to carry our argument on, we first look for an explicit expression for averages
of two functions separately depending on momentum or displacement. A direct calculation
leads from equation (7) to the following expansion:

〈T2u[Â(zi(v))B̂(zj (u))]〉 = N
∫

dη dξ

2πh̄
e−βHeff(η,ξ)

∫
dy dz

2π

A(y)B(z)

[8ii8jj −82
ij (u− v)]1/2

× exp

{
− 8ii8jj

2[8ii8jj −82
ij (u− v)]

×
[
(y − ρi)2
8ii

+ (z− ρj )
2

8jj
− (y − ρi)8ij (u− v)

8ii8jj
(z− ρj )

]}
. (9)

with 8kk ≡ 8kk(0). We note that, when static quantities are approached, i.e. the two
imaginary times become equal, the particular ordering of operators depending on bothp̂

and x̂ has to be specified. Any of the two possible orders,p-left or p-right, is obtained
from the equation above by simply taking the appropriate limitv − u→ 0±.

The final step involved in the calculation of higher order moments is the integral
expression for the average of the imaginary time-ordered product of two operatorsÂ andB̂
at two different timesu andv, both depending on momenta and displacements. Without loss
of generality we can considerp-left ordered operators, so thatÂ = Â1(p(u

+))Â2(x(u)) and
similarly for B̂. By specializing equation (11) to this situation and with evident meaning
of the notation, we obtain

〈Tu[A(p̂(u), x̂(u))B̂(p̂(v), x̂(v))]〉 = 〈Tu[A1(p̂(u
+))A2(x̂(u))B1(p̂(v

+))B2(x̂(v))]〉
= N

∫
dη dξ

2πh̄
e−βHeff(η,ξ)

∫
d4y

A1(y1)A2(y2)B1(y3)B2(y4)

(2π)2 det1/2(9ij )

× exp

[
− 1

2

∑
ij

(yi − ρi)9−1
ij (yj − ρj )

]
(10)

where nowρ = t (η, ξ, η, ξ) is a four-component vector and we have introduced the
4 × 4 matrix 9 with elements911 = m2ω2922 = 933 = m2ω2944 = m2ω2α,
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912 = 921 = 934 = 943 = −ih̄/2, 913 = m2ω2924 = 931 = m2ω2942 = m2ω23f (u− v)
and914 = −923 = −932 = 941 = 0f (u− v).

From equation (10), when(u− v)→ 0+, we find the static average,

〈ÂB̂〉 = N
∫

dη dξ

2πh̄
〈〈AB〉〉e−βHeff(η,ξ) (11)

indeed recovering our previous result[3, 5]†.
As far as the Mori product is concerned, the well known series expansion

(2πε)−1/2 exp{−x2/(2ε)} = ∑∞
n=0(1/n!)(ε/2)nδ(2n)(x) appears to be an efficient tool to

approximate the static Mori product of general operators, as well as their dynamical
correlations, when the scales of the quantum fluctuations in the system, ruled by ¯h and
the natural length scaleα, are small. Indeed, as the averages of3f (u) and0f (u) in [0, βh̄]
vanish, we have

(Â(p̂, x̂)|B̂(p̂, x̂)) = N (βh̄)
∫

dη dξ

2πh̄
e−βHeff(η,ξ){〈〈A(η, ξ)〉〉〈〈B(η, ξ)〉〉

+ 1
2[(m2ω4AppBpp + 2m2ω2ApxBpx + AxxBxx)σf
+(AppBxx − 2ApxBpx + AxxBpp)µf ] + o(α2, h̄2)} (12)

where the subscripts ofA andB denote the derivatives, whileσf andµf are the averages
of 32

f and 02
f in [0, βh̄]. Therefore, asσf is of order α2 and µf of order h̄2, at the

lowest order(Â(p, x)|B̂(p, x)) reduces to the ‘classical-like’ average of the product of the
Gaussian spreads of the two operators taken at the same order:

(Â(p, x)|B̂(p, x)) = Nβh̄
∫

dη dξ

2πh̄
〈〈A(η, ξ)〉〉〈〈B(η, ξ)〉〉e−βHeff(η,ξ) + o(α, h̄). (13)

This zeroth-order approximation was proposed in [9] withad hocassumptions and without
any possible control or improvement of the accuracy.

For a deeper discussion of the properties of our method, we shall give explicit
formulae that refer to a particle in a potential. These can be numerically computed and
directly compared with the results of experiments; it is well known, for instance, that the
displacement–displacement correlation function can be probed by neutron scattering. We
therefore assume the Hamiltonian

H(p, x) = p2/2m+ V (x) V (x)− V ′′(x0)(x − x0)
2/2≡ gv(x). (14)

wherex0 is the absolute minimum of the potential, and the quantum coupling constantg has
been defined. The effective Hamiltonian is thereforeHeff(η, ξ) = η2/(2m)+Veff(ξ), where
m is now the particle mass, i.e. a constant, andVeff(ξ) = 〈〈V (ξ)〉〉 + β−1 ln(f −1 sinhf ).

The simplest physically relevant quantity that can be discussed is given by the imaginary
time-ordered correlation of two dynamical variablesA(x) andB(x), dependent upon the
coordinates only. For standard Hamiltonians the integration over momentum can be
performed and we obtain the following explicit expression for the correlation function:

〈Tu[A(x̂(v))B(x̂(u))]〉 = N
√

m

2πβh̄2

∫
dξe−βVeff(ξ)

∫
dy
∫

dz 2A(y)B(z)

×
exp

{
− (y−z)2

4[α−3f (u−v)]
}

[4π(α −3f (u− v))]1/2

exp
{

(y+z−2ξ)2

4[α+3f (u−v)]
}

[4π(α +3f (u− v))]1/2
. (15)

† We recall that, as clearly observed in [5], the final result for the static average is independent of the particular
ordering (representation) chosen for a given operator. In fact, different ordering correspond to different moments
of the Gaussian spread, which lead to the same final result.
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From the last equation, or by specializing equations (10) and (12), the expansion for the
Mori product is finally obtained:

(A(x̂)|B(x̂)) = Nβh̄
√

m

2πβh̄2

∫
dξe−βVeff(ξ)

{
A(ξ)B(ξ)+ α

2
[A′′(ξ)B(ξ)+ A(ξ)B ′′(ξ)]

+α
2

8

[
A(iv)(ξ)B(ξ)+ A(ξ)B(iv)(ξ)+

(
2+ 4σf

α2

)
A′′(ξ)B ′′(ξ)

]}
+ o(α2).

(16)

Note that for the displacement–displacement correlation function only the first term in the
last equation (or in equation (12)) survives and gives the total contribution to(A(x̂)|B(x̂))
in the effective-potential approach. Comparing with equation (11), we have〈x̂2〉 =
(βh̄)−1(x̂|x̂) + α . This shows the twofold contribution of the quantum fluctuations, i.e.
the spreads of the potential and of the quantity under averaging. The Mori product takes
into account the spread of the potential only. Since we can calculate the zero moment
〈ω〉(0) = (x̂|x̂) and since the higher moments are given by the other previous equations,
the dynamic correlations〈x̂(t)x̂〉 can be eventually determined by the continued fraction
expansion [5–8].

We wish to conclude with some remarks on another possible dynamical extension of
our theory. We can assume that our system evolves with the effective Hamiltonian as found
for the thermodynamic behaviour. This means that we take the commutator for its quadratic
part, while we consider the Poisson brackets for the one-loop-renormalized nonlinear part.
In order to do this, we have to use a representation of the operators describing the dynamical
variables which permits us to unify quantum and classical dynamics, for instance, the Weyl-
representation [3, 5] or the Liouvillian scheme. To better understand this point we recall in
the first place that harmonic oscillators evolve by the same law in both classical and quantum
dynamics; the differences between quantum and classical statistical evolution are due to the
thermal occupation numbers, which are static quantities. For real systems, the quantum
deviations from the harmonic behaviour are ruled by the coupling constantg, related to
quantum nonlinearity. Ifg is vanishing, the noncommutativity of operators at different
times can be neglected and equation (12) can be assumed to hold its validity at different real
times, provided also thatα is small enough, so that the Gaussian spreads ofÂ andB̂ do not
overlap. At this level, the times averages of the quantities〈〈Â〉〉 and〈〈B̂(t)〉〉, evolving with
the effective potentialVeff(ξ) [9, 10], can provide an approximation for the time-dependent
Mori product (Â|B̂(t)). Finally its Fourier transform then gives the relaxation function
RA,B(ω), which is connected to the Fourier transformCA,B(ω) of the dynamical correlation
function 〈ÂB̂(t)〉 by means of the fluctuation-dissipation theorem, as in equation (2). This
last operation simply restores the correct static quantum occupation numbers.

We stress that the results become exact wheng → 0, i.e. for quantum harmonic
oscillators with a classical nonlinear interaction term. Of course, the other exact limit
is the classical system. For finite values ofg, the validity of this scheme also involves
the amplitudes of the Gaussian fluctuations ruled by the parameterα. Therefore, there is
the same behaviour found for approaching static correlators with the effective Hamiltonian
[5, 11]. In that case, the lowest limit of temperature was found to be related to both
parametersg andα. For the dynamic correlators, this procedure yields a good approximation
for times up to the order of ¯hβ, for which the use of the effective potential makes sense
in the calculation of the static quantities at lowest order, reproducing for example a correct
second moment for the displacement–displacement dynamic correlator with a well-behaved
classical long-time decay.
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